
THERMAL MODE OF A RESISTANCE FURNACE FOR DRAWING OPTICAL FIBER. 

I. GENERALIZED MATHEMATICAL MODEL OF THE HEATING UNIT 
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A foundation is given for a physical and mathematical model of a resistance 
furnace for drawing optical fibers and the algorithm for the numerical solu- 
tions of the problem formulated is considered. 

It is known that the quality of fibers depends substantially on the temperature mode 
of the drawing, which is determined by the heating unit for preparation at the required 
temperature. Graphite resistance furnaces [i] are used extensively in recent years for 
the fabrication of high-quality quartz optical fibers, where the design is, as a rule, 
performed at an empirical level without a total analysis of the thermal mode. 

The thermal mode of a resistance furnace is investigated below and methods to assure the 
most favorable temperature conditions for fiber formation as well as an increase in the life- 
time of the graphite heating element are discussed. 

On the basis of an analysis of the structural features of the main types of resistance 
furnaces [2-4] utilized for the industrial production of optical fiber, a thermal model 
was developed for the heating unit which includes the housing 1 with graphite heating 
element 2 (Fig. i) which is a hollow cylinder with variable outer and inner diameters. 
Thermal insulation is provided from the outside and inside of the heater by using the 
cylindrical screens 3 and 4. The mathematical model of the heating unit should permit 
determination of the temperature field of the graphite heating element as a function of 
the structural features of the furnace and the fiber formation conditions. It is hence 
assumed that the temperature distribution in the heating element can be considered one- 
dimensional because of the high heat-conductivity of graphite and the axial symmetry. 
Three characteristic sections (Fig. i) are separated when computing the thermal losses 
from the outer surface. Heat transfer through the cylindrical wall that has an effective 
heat conductivity Xsh in the radial direction is considered in section I, convective heat 
transfer into the closed cylindrical interlayer and radiation from the heater surface onto 
the surface of the shell i which has the temperature Tsh in section II, and natural con- 
vection in the closed cylindrical interlayers and radiation heat transfer from the screens 
3 in section III. Taken into account in computing the thermal losses from the inner 
surface are radiation by the inner screen 4, the ingot 5 and heat elimination by mixed 
convection from the heater surface. The derivation of the heat conduction equation is 
analogous to the case considered in [5], which permits utilizing the results obtained 

there 
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Fig. i. Thermal model of a resistance 
f u r n a c e  f o r  d rawing  an o p t i c a l  f i b e r .  
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Here  and h e n c e f o r t h  R ~ = dR/dz*~ Rp v = dRp /dz ,  Rp v : dRpz/dzo The f i r s t  component  i n  t h e  
r i g h t  s i d e  in  (1) c h a r a c t e r i z e s  e n e r g y  t r a n s f e r  by h e a t  c o n d u c t i o n ,  w h i l e  t h e  second  d e t e r -  
mines  t h e  power of  t h e  i n t e r n a l  e n e r g y  s o u r c e s .  The t h i r d  component  d e t e r m i n e s  t h e  s u r f a c e  
e n e r g y  s i n k  w i t h  a r e a  e l e m e n t  dA ( F i g .  2) i n  t h e  s e c t i o n  z due t o  c o n v e c t i o n  and r a d i a t i o n  
on t h e  whole  s u r f a c e  o f  t h e  f i r s t  s c r e e n  ( i t  i s  h e r e  assumed t h a t  t h e  t e m p e r a t u r e  o f  t h e  
f i r s t  o u t e r  s c r e e n  i s  c o n s t a n t  and e q u a l  t o  T s i ) ,  t h e  f o u r t h  g o v e r n s  t h e  l o s s e s  due to  
c o n v e c t i o n  and r a d i a t i o n  d i r e c t l y  a t  t h e  s h e l l  ( t h e  s e c t i o n  I I  in  F ig .  1 ) .  I t  was assumed 

ga 

i n  t h e  c o m p u t a t i o n s  t h a t  T i = (~p + T s h ) / 2 ,  where  T-p----- 1 ~'Tpdz*. The q u a n t i t y  ap was 
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computed for the case of natural convection in a cylindrical interlayer with inner cylinder 
temperature greater than the outer temperature [6]. 

The fifth component in (i) characterizes the surface energy sink due to conductivity 
of the housing (section I in Fig. l). And, finally, the last three components describe the 
energy sink from the inner heater surface due to convection, radiation by the inner screen 
and the ingot. 

The angles ~i = {~J' ~J ~ Yj' Oj} are angles between the normal to the heat eliminat- 
ing surface and the direction of radiation propagation (Fig. 2) and respectively equal [7]: 
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where R~ i is the shape of the heat eliminating surface, and z, z* are~ respectively, the 
coordinates along the surfaces ~i and R~= (Fig. 2); 
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Fig. 2. To derive the heat balance 
equation. 

IZ 
The coefficients $i (i = i, 2, ..., 5) in (i) are weight factors whose magnitude is 

determined by the longitudinal coordinate 
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The integration limits c i (i = i, 2, 3, 4) are determined by the magnitude of the 
longitudinal coordinate 

(cl, c~) = / (a2, as), if a~<z<a3,] 
[(a~, as), if a~'< z < as, 

(C8, Ca ) = /(al, b), if a l < z < b ,  
[(bl, a6), if bl < z < a~. 

Let us examine in greater detail the method of determining the unknown quantities 
~px, Tg, T s and Tsx in (i). 

We consider computation of the temperature of the first outer screen. The heat flux 
from the whole outer heater surface onto the screen surface equals 

The flux from the whole surface of the first screen onto the shell surface in the presence 
of n screens with a constant temperature [8] is 
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Fig. 3. To compute the external 
heat elimination coefficient. 

In the stationary state Qp~ = Qsh, from which it can be found that 
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In the general case a computation of the temperature field of the heating element in 
the furnace construction with and without inner screens is of interest. A computation of 
the local value of the external heat elimination coefficient in the absence of inner 
screens will be examined below. A more general computation of ap~ and Tg, i.e., in the 
presence of inner screens or just one, will be analogous to the above=mentioned one and 
will not be presented because of the awkwardness of the formulas. The following assump- 
tions were made in evaluating ap: and Tg. 

i. Estimates of the boundary layer thickness show that it does not fill the whole 
transverse section of the channel completely, therefore, the heat transfer can be considered 
independently for each of the walls. 

2. An actual configuration of the computation domain was replaced by the domain shown 
in Fig. 3. Since mixed convection holds in bhe channel, then the local value of the 
Nusselt number is found from the relationship [9] 

Nu~ = NU~c q- Nu~r 

It is considered that mixed convection from the vertical cylinder holds in section 1 (Fig. 
3), from the vertical cone in section 2, from the thin vertical filament being blown out 
by a longitudinal air stream from the furnace surface as from a vertical plate in section 3. 
The values Nuxcand Nuxi were found from the appropriate relationships presented in [6, I0, 
l l ] .  

3. It is considered that the gas temperature along the channel length varies by a 
linear law from the temperature Ti~ at the input to a certain temperature T~ at the output: 

T g =  7 i l - - T ~  z + T ~  
a 6 - - a  i 

4. Estimates show that the pressure drop in the channel is much less than one; con- 
sequently, the velocity distribution in the channel can be found from the mass conservation 
law with the temperature expansion of the gas taken into account [12], i.e., 

--2 2 
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Here Rpl 1 =~ = ~ Rpldz is the mean radius of the inner surface of the heating element, 
a6 - -  al 

the subscript i is the value of the parameters at the channel input. 

On the basis of energy conservation, the change in the internal gas energy equals the 
quantity of heat delivered to the channel side walls, i.e., 

aa--at a ~ a l  
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0 0 

Substituting the dependence Tg(z) into (3) and solving the equation obtained for Tx, we 
obtain 
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The gas temperature at the channel exit is computed by iteration. A certain initial 
approximation of the temperature Tx is given, Tg(z), Vg(Z) and Nu x are computed, and the 
refined value of T~ is found from (4). The iterations cease when [T~--T~I+I[<A , where i 
is the number of the iteration. 

The equation to compute the temperature of the upper or lower inner screen is obtained 
analogously to (2), but gas blowing through the heating zone is taken into account by the 
introduction of a convective energy sink from the screen surface. We present an equation 
to compute the temperature of the upper screen (for the lower screen the equation is 
analogous): 
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~s, Tg, T, Rpx are, respectively, the mean values of Us, Tg, 

(b - ~0 ;  ~ .  = b -  ~---T o, 

b 

a~ $2 

T, RpL in the section 

Let us consider selection of the boundary conditions. The heat flux delivered to the 

heating element endface because of heat conduction is ~.p OTp --ql ; a flux q~ = Lsh (yv_Tsh) 
Oz d 

is transferred through a plane wall of thickness d while the flux q3--=-O~h(Tsh----To) is dis- 
sipated in the environment. In the stationary state qx = q2 = qa, which permits us to 
obtain 

aT___z~ = ~ h  x h  6% - To), z = al,  (5)  
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= (Tp - -  To), z = ae. (6 )  ez l(l--a6) + ap 
H e r e  Xsh *,  Xsh a i s  t h e  s h e l l  c o n d u c t i v i t y  i n  t h e  a x i a l  d i r e c t i o n  f o r  z = a~ a n d  z = a s ,  
r e s p e c t i v e l y ,  a s h  ~ a n d  a s h  2 a r e  t h e  e x t e r n a l  h e a t  e l i m i n a t i o n  c o e f f i c i e n t s  f r o m  t h e  h o u s i n g  
s u r f a c e  f o r  z = 0 a n d  z = l ,  t h e  l a t t e r  a r e  d e t e r m i n e d  f o r  t h e  c a s e  o f  n a t u r a l  c o n v e c t i o n  
f r o m  a h o r i z o n t a l  p l a t e  w i t h  a h e a t  e l i m i n a t i n g  s u r f a c e  t u r n e d  u p w a r d  a n d  downward  [ 6 ] .  

(or  =o) 
Thus, the heating element temperature distribution in the stationary state ~- 

is described by (I) with the boundary conditions (5) and (6). Solution of the problem 
formulated was by finite differences. After approximating the initial equation, which is 
nonlinear, a system of nonlinear algebraic equations is obtained for whose solution some 
iteration process must be utilized. In this case, it is quite complicated to indicate an 
initial approximation of the solution such as would assure convergence of the iterations. 
Consequently, it is convenient to solve the problem formulated by the build-up method, 
i.e., the stationary heating element temperature distribution is considered the result of 
building up a process evolving in time. Upon giving a certain initial temperature distri- 
bution 

Tp(z, ~ ) = % ( z )  ~ r  * = 0  (7 )  

it is natural to expect that the solution Tp(z, T) will change ever more slowly with the 
lapse of time and go over into the equilibrium temperature distribution Tp(z) in the limit 
as T + ~. Upon assigning a sufficiently small time step, Tp i in the i-th time layer will 
be slightly different from Tp i+: in the (i + l)-th time layer, which will assure convergence 
of the iteration process when solving the system of nonlinear equations if the temperature 
distribution in the i-th time layer is taken as the initial approximation. 

The formulated initial-boundary-value problem (I), (5)-(7) was approximated by an 
implicit difference scheme of second-order accuracy for equations with variable coefficients 
[13]. The system of nonlinear algebraic equations was solved by the Newton method [14] in 
each time layer. The accuracy of the iteration convergence was given in each time layer 

m x I I 
] --Pl 

and for the buildup 

where n is the number of the iteration in the (i + 1)-th time layer, and j is the number of 
the node. 

The computation algorithm considered above was realized in the language FORTRAN-4. It 
is established from computations that the iteration scheme developed turns out to converge 
well. To achieve steady values of the temperature, on the order of 800-1000 time steps are 
required while to find the solution of the nonlinear system of equations at each time layer 
is usually done in from 3-5 iterations by the Newton method. It is here necessary to 
emphasize that the computed program permits replacement of the initial data to change the 
furnace construction and its geometric dimensions. Namely, there is the possibility of 
giving, first, the absence or presence of the inner screens 4 (see Fig. i), second, the 
absence or presence of any of the domains separated out earlier in Fig. i for the computa- 
tion of the surface energy sinks or their arbitrary tracking combinations along the longi- 
tudinal coordinate, and third, arbitrary changes are possible in the shape of the inner 
heating element surface within the framework of axial symmetry. This permits execution of 
computations of the thermal mode of heating element operation for practically any resist- 
ante furnace construction for drawing optical fibers. 

NOTATION 

Cp, pp, Xp, specific heat, density, and heat conduction of graphite; Rp, Rp:, shapes 
of the generators of the outer and inner heating element surfaces ; l, length of the furnace 
housing; ai, bj, respectively, the geometric dimensions of the furnace and the inner screen, 
i = i, 2, ..., 6; j = i, 2; Rs, Rsl , Rsh , Rsi, respectively, the radii of the inner screen, 
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the first outer screen, the shell, and the i-th outer screen~ Fs, , Fsh , Fsi , surface areas 
of the first screen, the shell, and the i-th screen; Tp, To, T, Ts, respectively, the 
temperatures of the heater, the surrounding air, the jet, and the temperature of the upper 
or lower inner screen; Ti, mean gas temperature between the heater and the shell; Ts, , 
temperature of the first outer screen; T, time; z, longitudinal coordinate; R, shape of 
the jet surface generator; I, current intensity flowing through the heating element; 9p, 
specific electrical resistivity of graphite; Go, Stefan--Boltzmann constant; nc, refractive 
index of the gas being blown through the heating zone; ~, ep, Es*, esh, esi, es, respec- 
tively, emissivities of the ingot, heater, first outer screen, shell, i-th outer screen, 
inner screen; ap, ash , external heat elimination coefficients from the external heater 
surface and the shell surface; ~p,, a, local values of the external heat elimination 
coefficient from the inner heater surface and jet; Tg, a function that describes the 
longitudinal temperature distribution of the gas blown through the heating zone; Nuxc, Nuxs , 
local values of the Nusselt number for free and forced convection; Vg, gas velocity; PF ' 
gas density; Cpi, gas specific heat at the channel inlet; A, error; K, time step; si, 
distance between the heat eliminating surfaces, i = i, 2, 3, 4; as, local value of the 
external heat elimination coefficient from the inner screen. 
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